MATHEMATICS

MFP4

Unit Further Pure 4

Tuesday 27 January 20091.30 pm to 3.00 pm

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The line l has equation $\mathbf{r}=(1+4 t) \mathbf{i}+(-2+12 t) \mathbf{j}+(1-3 t) \mathbf{k}$.
(a) Write down a direction vector for l.
(b) (i) Find direction cosines for l.
(ii) Explain the geometrical significance of the direction cosines in relation to l.
(c) Write down a vector equation for l in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$.

2 The 2×2 matrices \mathbf{A} and \mathbf{B} are such that

$$
\mathbf{A B}=\left[\begin{array}{cc}
9 & 1 \\
7 & 13
\end{array}\right] \quad \text { and } \quad \mathbf{B} \mathbf{A}=\left[\begin{array}{cc}
14 & 2 \\
1 & 8
\end{array}\right]
$$

Without finding \mathbf{A} and \mathbf{B} :
(a) find the value of $\operatorname{det} \mathbf{B}$, given that $\operatorname{det} \mathbf{A}=10$;
(b) determine the 2×2 matrices \mathbf{C} and \mathbf{D} given by

$$
\mathbf{C}=\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}\right) \quad \text { and } \quad \mathbf{D}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

where \mathbf{M}^{T} denotes the transpose of matrix \mathbf{M}.

3 The points X, Y and Z have position vectors

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
5 \\
7 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{z}=\left[\begin{array}{r}
-8 \\
1 \\
a
\end{array}\right]
$$

respectively, relative to the origin O.
(a) Find:
(i) $\mathbf{x} \times \mathbf{y}$;
(ii) $(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}$.
(b) Using these results, or otherwise, find:
(i) the area of triangle $O X Y$;
(ii) the value of a for which \mathbf{x}, \mathbf{y} and \mathbf{z} are linearly dependent.

4 (a) Given that -1 is an eigenvalue of the matrix $\mathbf{M}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$, find a corresponding eigenvector.
(b) Determine the other two eigenvalues of \mathbf{M}, expressing each answer in its simplest surd form.

5 (a) Expand the determinant

$$
D=\left|\begin{array}{lll}
1 & 1 & 1 \\
x & y & z \\
z & x & y
\end{array}\right|
$$

(b) Show that $(x+y+z)$ is a factor of the determinant

$$
\Delta=\left|\begin{array}{ccc}
x & y & z \\
y-z & z-x & x-y \\
x+z & y+x & z+y
\end{array}\right|
$$

(c) Show that $\Delta=k(x+y+z) D$ for some integer k.

6 The line L and the plane Π are, respectively, given by the equations

$$
\mathbf{r}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]+\lambda\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=20
$$

(a) Determine the size of the acute angle between L and Π.
(b) The point P has coordinates $(10,-5,37)$.
(i) Show that P lies on L.
(ii) Find the coordinates of the point Q where L meets Π.
(iii) Deduce the distance $P Q$ and the shortest distance from P to Π.

7 Two fixed planes have equations

$$
\begin{aligned}
x-2 y+z & =-1 \\
-x+y+3 z & =3
\end{aligned}
$$

(a) The point P, whose z-coordinate is λ, lies on the line of intersection of these two planes. Find the x - and y-coordinates of P in terms of λ.
(b) The point P also lies on the variable plane with equation $5 x+k y+17 z=1$. Show that

$$
\begin{equation*}
(k+13)(2 \lambda-1)=0 \tag{3marks}
\end{equation*}
$$

(c) For the system of equations

$$
\begin{aligned}
x-2 y+z= & -1 \\
-x+y+3 z= & 3 \\
5 x+k y+17 z= & 1
\end{aligned}
$$

determine the solution(s), if any, of the system, and their geometrical significance in relation to the three planes, in the cases:
(i) $k=-13$;
(ii) $k \neq-13$.

8 The plane transformation T has matrix $\mathbf{A}=\left[\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right]$, and maps points (x, y) onto image points (X, Y) such that

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(a) (i) Find \mathbf{A}^{-1}.
(ii) Hence express each of x and y in terms of X and Y.
(b) Give a full geometrical description of T.
(c) Any plane curve with equation of the form $\frac{x^{2}}{p}+\frac{y^{2}}{q}=1$, where p and q are distinct positive constants, is an ellipse.
(i) Show that the curve E with equation $6 x^{2}+y^{2}=3$ is an ellipse.
(ii) Deduce that the image of the curve E under T has equation

$$
2 X^{2}+4 X Y+5 Y^{2}=15
$$

(iii) Explain why the curve with equation $2 x^{2}+4 x y+5 y^{2}=15$ is an ellipse.

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

